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Like the Burgess Shales of Canada, the Chengjiang LagerstaÈtte
from the Lower Cambrian of China is renowned for the detailed
preservation as fossils of delicate, soft-bodied creatures1±9, pro-
viding an insight into the Cambrian explosion. The fossils of
possible hemichordate chordates5±7 and vertebrates9 have
attracted particular attention. Tunicates, or urochordates, com-
prise the most basal chordate clade10, and details of their evolution
could be important in understanding the sequence of character
acquisition that led to the emergence of chordates and verte-
brates11±18. However, de®nitive fossils of tunicates from the Cam-
brian are scarce or debatable4,9,19±24. Here we report a probable
tunicate Cheungkongella ancestralis from the Chengjiang fauna. It
resembles the extant ascidian tunicate genus Styela whose mor-
phology could be useful in understanding the origin of the
vertebrates.

Phylum Chordata
Subphylum Urochordata

Class Ascidiacea
Cheungkongella ancestralis gen. et sp. nov.

Type species. Cheungkongella ancestralis.
Etymology. Genetic name is a metaphor of China and is also in
honour of the Cheungkong Scholars Programme that supports this
work; the speci®c name is a reference to its possible primitive
position.
Holotype. Early Life Institute (ELI), Northwest University, Xi'an:
ELI-0000195.
Stratigraphy and locality. Qiongzhusi Formation, Yu'anshan
Member (Eoredlichia Zone); Lower Cambrian. The specimen was
collected by L.C. and J.H. from the same locality and horizon as the

animal Xidazoon8 and agnathan vertebrate Myllokunmingia9.
Diagnosis. The body is club-shaped, reminiscent of extant ascidian
Styela, with two-fold division: an upper main body and a lower
thick supporting stem attached to hard substratum (Fig. 1). The
body is wholly enclosed within a structure interpreted as a secreted
tunic. The stem tapers downward, and the main body is bucket-
shaped in outline, bearing a large oral siphon with short tentacles on
its top and a small cloacal one on the lower dorsal side. A pharynx
occupies over two-thirds of the body volume.
Description. Cheungkongella ancestralis, new genus and species, is
known from a single specimen, with a total length of about 25 mm.
The whole body consists of two regions: a stout stem, which in life
supported a sub-spherical main body. The stem (about 15 mm
long) tapers distally, and is attached to the exterior surface of the
left, free cheek of a trilobite Eoredlichia intermedia, an index fossil
for the Lower Cambrian. The stem bears some transverse creases,
consistent with an enclosing tunic, and prominent longitudinal
`ribs'. The distal section has a conspicuously coarse texture, and has
several patches of agglutinated sediment including quartz grains.

The main body (roughly 10 mm long) was probably sub-spherical
in life. Wrinkling of the compressed body on the ventral side
(opposite to cloacal siphon) is consistent with folding of a tough
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Figure 1 The Lower Cambrian urochordate Cheungkongella ancestralis gen. et sp. nov.

from Haikou, Kunming, Yunnan. Specimen ELI-0000195, viewed from the left. Scale bar,

1 mm. Bt, buccal tentacles; Cs, cloacal siphon; Dt?, degenerating tail; Os, oral siphon;

En?, presumed endostyle; Es?, possible esophagus; Ph, pharynx; S?, presumed stomach;

St, stem; T, tunic; Tf, tentacle-like fringe; Tfc, trilobite free cheek.

© 2001 Macmillan Magazines Ltd



letters to nature

NATURE | VOL 411 | 24 MAY 2001 | www.nature.com 473

tunic. The large funnel-like structure ®lled with a layer of sediment
on the top is interpreted as the oral siphon, as is found in all solitary
ascidians. To the lower right of the main body, presumably repre-
senting the original dorsal side, a narrow but distinct extension is
interpreted as the excurrent (or cloacal) siphon, and is consistent
with a rather marked change in level in this area. Lower and outside
to the cloacal siphon there is an arcuate area, where there is a
recongnizable recurvate dark ridge. This structure is dif®cult to
interpret, but when compared to the last stage of metamorphosis of
living ascidians25, it could represent the remnant of a larval tail.

A prominent rectangular dark area, covered with numerous
lighter dots, is located in the upper part of the body cavity. The
lower ventral corner of the dark area extends downward as a `tail-
like' structure. The dark area, compared to modern ascidians, with
its dextral con®guration, large size and appropriate location in the
body, is consistent with its identi®cation as the pharynx. Whether
the lighter dots represent gill openings remains to be con®rmed.

Two interesting structures are located above and below the oral
siphon. The area between the siphon and the pharynx is preserved in
dark grey. Observation shows a longitudinal alignment of structures
suggestive of buccal tentacles. Above the oral siphon, another set of
short tentacle-like ®laments is recognizable. They are super®cially
similar to siphonal fringe or oral lobes of some extant ascidians, but
are also reminiscent of the tentacles of extant lophophorate phor-
onids and the Lower Cambrian lophophorate Cambrotentacus4. We
suggest that this Cambrian tunicate was a suspension feeder, with
water entering the oral siphon and being expelled through the
cloacal siphon after ®ltration.

The main body and upper two-thirds of the supporting stem lie
laterally on the same bedding plane, but the lower third of the stem
is bent steeply into the sediment and attached to a free cheek of a
trilobite. This arrangement could indicate burial of the tunicate in
situ. The presence of agglutinated quartz grains, substantially
coarser than the surrounding matrix, on the lower stem suggests,
however, that the animal inhabited a higher-energy, sandy sea ¯oor
and was transported to its point of burial. During deposition the
heavier trilobite sclerite sank ®rst, so tethering the tunicate in the
rapidly accumulating sediment. The three-dimensional preserva-
tion and remains of the delicate tentacles are indicative of its
suffering little decomposition.

Urochordata are believed to represent the most basal chordate
branch within Chordata11,26; however, whether the ancestral chor-
dates were free-swimming or sessile has been a long-standing
question18,26,27. Traditional hypotheses hold that vertebrates
evolved by paedomorphosis from a urochordate-like larval
stage, and that the ancestor of chordates would have resembled a
sessile lophophorate12,13,27. Recent models, supported by molecular
data, posit a free-swimming ancestry of chordates, including
urochordates28±30.

Fossils may preserve combinations of characters not seen in
extant groups, and so are crucial for testing schemes of how
characters were acquired in the origin of new body plans. The
interpretation of the present specimen, as possessing oral tentacles
comparable to those seen in lophophorates, is consistent with tradi-
tional viewsÐif not modern, molecule-based hypothesesÐbut a
single example is far from being conclusive. Further palaeontological
and molecular work is needed to investigate the problem. M
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Exposure to visual patterns of high contrast (for example, gratings
formed by alternating white and black bars) creates after-effects
in perception. We become temporarily insensitive to faint test
patterns that resemble the pre-exposed pattern (such as gratings
of the same orientation), and we require more contrast to detect
them1. Moreover, if the test pattern is slightly tilted relative to the
pre-exposed one, this tilt may be perceptually exaggerated: we
experience a tilt after-effect2,3. Here we show that these visual
after-effects occur even if the pre-exposed grating is too ®ne to be
perceptually resolved. After looking at a very ®ne grating, so high
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